

SuDBE 2009

University of Chongqing, CQ China

Charl E Janeke (PE), Los Angeles, California, USA

Polar Equilibrium

An Interactive Analysis of the Controlling Global Thermal Forces

Polar Equilibrium

1. The most compelling question confronting modern society is sustaining the global environment in its present form.

Polar Equilibrium

2. The rapid retraction of the polar ice caps, glaciers fields & global snow depositories, the destruction of the Amazon rain forests, expanding deserts & persistent continental droughts raised the scepter of universal demise.

3. With carbon dioxide (CO2) to blame for the impending global (greenhouse) demise, the pertinent question is whether CO2 is the driving denominator OR whether CO2 is simply an <u>indicator</u> of much more powerful forces at work.

Polar Equilibrium

4. Although the combustion of fossil fuels & destruction of the Amazon forests have increased the atmospheric carbon dioxide concentration to a 400,000 year peak, the earth & the associated environment must be seen as a <u>slice</u> in an evolutionary process.

Polar Equilibrium

5. In order to answer the question as to the driving forces & perceived events, a global <u>heat balance</u> model has been devised as to the interaction of fossil fuel combustion, solar heat gain, radiation loss into deep space, the polar ice caps & carbon depositories of the world.

Polar Equilibrium

6. A 2nd (crust formation) model has been devised to demonstrate the rate of chilling at the formation of the earth. Common <u>emissivity/absorptivity</u>'s of <u>0.4 & 0.8</u> has been demonstrated in synergy with the heat balance & crust formation models.

7. It is being attested that CO2 particulate is not a material factor as to thermal blanketing OR emissitvity/absorptivity conversely as the power of radiation into deep space is <u>4th power</u> driven (the Boltzman rule).

Polar Equilibrium

 Rational interaction between the GLOBAL combustion of hydrocarbon fuel & the depletion of the (polar) ice reserves (<u>approx 50%</u>) has conversely been demonstrated via the (global) equilibrium model.

Polar Equilibrium

 Rapid chilling of the earth has been demonstrated via the crust formation model.
 The <u>1st harmonic of formation</u> (©)(a refractive inversion gradient) transpired 3.5-4Byears after formation that fractured the mantle of the earth resulting in continental drift.

Polar Equilibrium

FRA	CTIONAL	VARIAN	ICE	GLO	BAL VA			
Surfa	ice tempe	erature ch	nange	Radi	ation rate	p space		
<u>#</u>	T-Abs	<u>Tr^4</u>	%Ra	<u>#</u>	T-Abs	<u>Tr</u>	<u>Tr^4</u>	
1	500	1	<u>0</u>	1	6500	13.0	3,088,050	
2	501	1.008	<u>0.8</u>	2	5500	11.0	<u>1,582,950</u>	
3	502	1.016	1.6	3	4500	9.0	709,300	
4	503	1.024	2.4	4	3500	7.0	259,500	
5	504	1.032	3.2	5	2500	5.0	67,470	
6	505	1.041	4.1	6	1500	3.0	8,650	
7	506	1.049	4.9	7	1000	2.0	1,622	
8	507	1.057	5.7	8	800	1.6	600	
9	508	1.066	6.6	9	600	1.2	116	
10	509	1.074	7.4	10	500	1.0	0	

	GLOBAL EQUILIBRIUM INVERSION (loss/gain tabulation)													
#	<u>T-Abs</u>	Gross rad	E	Heat loss	Solar rad	<u>A</u>	Heat gain							
1	6500	-16984870	0.4	<u>-6793948</u>	282	0.8	226							
2	5500	-8706820	0.4	<u>-3482728</u>	282	0.8	226							
3	4500	-3901745	0.4	-1560698	282	0.8	226							
4	3500	-1427845	0.4	-571138	282	0.8	226							
5	2500	-371680	0.4	-148672	282	0.8	226							
6	1500	-48170	0.4	-19268	282	0.8	226							
7	1000	-9515	0.4	-3806	282	0.8	226							
8	800	-3897	0.4	-1559	282	0.8	226							
9	600	-1233	0.4	-493	282	0.8	226							
<u>10</u>	500	-595	<u>0.4</u>	-238	282	<u>0.8</u>	226							
	E-Area	5.5E+15	ED	33000000	ft	ER	3.3E+17							

Formation Radiation Regression (raw vs. E-adjusted)

Polar Equilibrium

 <u>Clear skies</u> that spawned precipitation, rivers, rain forests, snowcaps, glaciers & the polar ice caps manifested some 2Byears after formation (eg 3.5B years BC) when the surface temperature of the earth dropped below 200F.

Polar Equilibrium

11. Rapid radiation loss, depletion of the incipient CO2 atmosphere & loss of core heat due to an <u>ever increasing</u> mantle depth, resulted in the onset of the 1st Ice Age 1B years ago as an inevitable consequence of thermal regression.

Polar Equilibrium

12. In order to complete the heat balance loop, it is necessary to develop a global impact model of <u>human activity</u> in terms of rate of combustion of the hydrocarbon resources vs. destruction of the carbon heritage of the earth.

Polar Equilibrium

 In accordance with Table #2 human activity will result in a <u>5% depletion</u> in the global ice reserves by 2100, with a corresponding <u>7F</u> increase in the mean global atmospheric temperature.

14. Notwithstanding its origin of a boiling plasma pot 4.5B years ago, the world chilled rapidly due to the powerful black-bulb radiation force that is <u>T^4 driven</u> with consequential chilling to approx 55F 1B years ago.

Polar Equilibrium

15. Although we are perceiving an immense meltdown phenomenon, the <u>global</u> impact is *de minimus* due to (1) the immense extent of (Polar) ice deposits & (2) the world is becoming chilled-out. Preserving the carbon heritage however rank #1.

Polar Equilibrium

16. The message hence is that although we are living in the realm of global harmonics with a cycle of 40-100,000 years, we cannot take for granted that a "spinning magna" (alone) would preserve human life via the cloak of an electromagnetic shield.

Polar Equilibrium

17. Equilibrium Thresholds;

.Carbon content of the Amazon basin .Carbon content of global forests generally .Combustion of fossil fuels as to CO2 emission .Combustion of fossil fuels as to thermal pollution .Latent heat content of the polar ice caps .Solar incidence vs. deep space radiation .Temperature of the magna at formation .Continental drift/reformation.

18. <u>Global Quanta;</u>
.Spherical area of the earth
.Plan/projection area of the earth
.Mass/weight of the atmosphere as is
.Production of coal/oil & natural gas
.Carbon dioxide (CO2) emission rates
.Polar ice mass/weight & trends thereto
.Carbon content of the Amazon/rain forests
.Global forestry carbon content & trends thereto.

Polar Equilibrium

PERIOD	UNITS	1900	1920	1940	1960	1980	1990	2000	2010	2020	2040	2060	2080	2100
Mult-factor	XX	10	10	10	10	10	10	10	10	20	20	20	20	20
A Carbon proc	luction;													
1 Global Oil	B-BAR/Y	0.00	0.80	2.00	20.00	20.00	25.00	30.00	25.00	20.00	18.00	9.00	2.50	2.00
2Global Oil	BTOilEq	0.00	0.12	0.30	3.00	3.00	3.75	4.50	3.75	3.00	2.70	1.35	0.38	0.30
3 Global Coal	BTOIIEq	0.40	0.60	0.80	1.30	1.80	2.20	2.20	2.50	3.70	3.80	3.70	2.25	1.75
4 Global Gas	BTOilEq	0.00	0.10	0.20	0.40	1.20	1.70	2.20	2.50	3.10	3.50	3.80	3.90	4.00
5CARBGross	BTOilEq	0.40	0.82	1.30	4.70	6.00	7.65	8.90	8.75	9.80	10.00	8.85	6.53	6.05
6CARBHeat	MBBtu/y	14	30	47	169	216	275	320	315	353	360	319	235	218
7 CARBCO2	BTon/y	1.5	3.1	5.0	17.9	22.9	29.2	33.9	33.4	37.4	38.1	33.8	24.9	23.1
BParticle bala	nce:	5 5	7	193	6 Ø5	1	1 17	50 BT	5	Alfanti di		1872	1.5	
1CARBPart	ppm	0.34	0.70	1.11	4.00	5.10	6.50	7.57	7.44	8.33	8.50	7.52	5.55	5.14
2AMZCO2-	ppm	2.00	1.95	1.90	1.85	1.80	1.75	1.70	1.65	1.60	1.55	1.50	1.45	1.40
3RESCO2-	ppm	2.00	1.90	1.80	1.70	1.60	1.50	1.40	1.30	1.20	1.10	1.00	0.90	0.80
4GBLC02-	ppm	4.00	3.85	3.70	3.55	3.40	3.25	3.10	2.95	2.80	2.65	2.50	2.35	2.20
5REFCO2	ppm	200	168	143	147	164	196	241	286	397	514	614	678	737
_ CRad heat ba	lance:		-	08			19	9 14	9	-	-	100	14	
1ERTRad-E	NIL	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
2SOLRad-E	NIL	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8
3Etemp-m	Renkin	500	500	500	500	500	500	500	500	500	500	500	500	500
4ERadLoss	Btu/SF	43.3	43.3	43.3	43.3	43.3	43.3	43.3	43.3	43.3	43.3	43.3	43.3	43.3
5ERadLoss	MBBtu/h	242	242	242	242	242	242	242	242	242	242	242	242	242
6SolRadIN	Btu/SF	240	240	240	240	240	240	240	240	240	240	240	240	240
7 SolRadIN	MBBtu/h	336	336	336	336	336	336	336	336	336	336	336	336	336
8 GainRad	MBBtu/h	94	94	94	94	94	94	94	94	94	94	94	94	94
9ICEFACT%	50	100	99.7	99.4	99.1	98.8	98.5	98.2	97.9	97.3	96.7	96.1	95.5	94.9

Polar Equilibrium

1 GainRad	MBBtu/h	94	94	94	94	94	94	94	94	94	94	94	94	94
2CARBHeat	MBBtu/y	14	30	47	169	216	275	320	315	353	360	319	235	218
3CARBStore	MBBtu/y	169	163	157	150	144	138	131	125	119	112	106	100	93
4NETHEAT	MBBtu/y	-61	-40	-16	113	166	232	283	284	328	342	307	229	218
5DIFFTemp	Renkin	-0.01	-0.01	-0	0.02	0.03	0.04	0.05	0.05	0.06	0.06	0.06	0.04	0.04
6NEWTemp	Renkin	500.0	499.9	499.9	500.1	500.4	500.9	501.4	501.9	503.2	504.5	505.6	506.5	507.3
7NEWTemp	Farenheit	72.0	71.9	71.9	72.1	72.4	72.9	73.4	73.9	75.2	76.5	77.6	78.5	79.3
8NEWTemp	Kelvin	296.7	296.7	296.7	296.8	297.0	297.2	297.6	297.9	298.6	299.4	300.1	300.6	301.1
9NEWTemp	Celcius	23.7	23.7	23.7	23.8	24	24.2	24.6	24.9	25.6	26.4	27.1	27.6	28.1
Etemp-m	Renkin	500	500	500	500	500	500	500	500	500	500	500	500	500
REFCO2	ppm	200	168	143	147	164	196	241	286	397	514	614	678	737
NEWTemp	Renkin	500.0	499.9	499.9	500.1	500.4	500.9	501.4	501.9	503.2	504.5	505.6	506.5	507.3
NEWTemp	Faranheit	72.0	71.9	71.9	72.1	72.4	72.9	73.4	73.9	75.2	76.5	77.6	78.5	79.3
800 700 600 500 400 300														

Polar Equilibrium

TRANSITIONAL thresholds;

Bi .years	Years	Miles>>	31	63	94	125	156	188	219	250	281	313	344	375	406	438	469
1	0.0	16000	6460	6460	6460	6460	6460	6460	6460	6460	6460	6460	6460	6460	6460	6460	6460
3	0.1	22540	30004	1423	5288	5797	6090	6256	6348	6399	6427	6442	6451	6455	6457	6459	6459
6	0.2	31612	2072	3900	4606	5158	5571	5867	6072	6211	6302	6361	6399	6423	6438	6446	6451
11	0.4	4978	14382	2719	4000	4507	4949	5317	5612	5842	6017	6147	6241	6308	6354	6384	6398
19	0.6	5659	11192	2083	3041	3800	4291	4701	5045	5334	5573	5767	5922	6041	6127	6184	6213
27	0.9	6485	945	1725	2489	3245	3900	4291	4634	4934	5193	5412	5593	5736	5842	5913	5948
38	1.2	7352	812	1467	2110	2743	3372	4000	4279	4541	4780	4991	5170	5316	5426	5500	5537
50	1.6	8268	728	1300	1857	2402	2938	3469	4000	4220	4425	4609	4769	4900	5000	5067	5101
63	2.0	<u>9207</u>	667	1178	1675	2157	2627	3088	3544	4000	4161	4309	4439	4547	46304	4687	4715
74	2.4	10163	623	1091	1545	1983	2405	2814	3212	3606	4000	4110	4208	4292	4356	4400	4422
84	2.7	11126	586	1020	1443	1850	2240	2612	2969	3316	3658	4000	4067	4125	4170	4201	4217
95	3.0	1290	550	949	1339	1716	2078	2425	2757	3076	3387	3693	3900	3978	4025	4053	4067
107	3.4	1359	519	889	1251	1603	1942	2267	2579	2877	3165	3446	3723	4000	4006	4010	4012
117	3.7	1435	550	949	1339	1716	2078	2425	2757	3076	3387	3693	3900	3978	4025	4053	4067

Polar Equilibrium

Macro Model

1,000 Miles =5,580,000ft 40x layers =140,000 ft/layer $\underline{\text{Dtime}} = (\frac{dL^2}{2} / 2 / k) \times \underline{\text{Cp}} \times \underline{\text{de}}$ Dtime = (140^2 / 20) x 200 / 8,500 Dtime =196/850x10^8 =23Myears

Polar Equilibrium 🌔

Polar Equilibrium 🛛 📜

Polar Equilibrium 🛛 🦳 🥱 😤

Polar Equilibrium 🛛 🦳 🥱 👘

